# EMBODIED CARBON OPTIMIZATION IN COMMERCIAL BUILDING THROUGH LIFE CYCLE ASSESSMENT OF

# KALPATARU INFINIA A



Timelines of the Project: April - 2022 to May - 2024



1

# **INTRODUCTION**



- Location Vakola, Santacruz East, Mumbai, Opposite Grand Hyatt Hotel.
- Configuration 3B + Gr + 12 Floors.
- ♣ Total Construction area of 10,744.18 square meters.
- Connectivity • Roads Western Express Highway, Santacruz-Chembur Link Road (SCLR)
  - Train Santacruz and Kurla Railway Stations,
  - Metro from Santacruz Metro Station.
- Environmental Parameters Considered Energy Efficiency, Water Management, Solid Waste Management, Sewage Treatment Plant.
- Upon completion, the project was handed over to ICICI Prudential Asset Management Company.

### **BROAD OBJECTIVE OF THIS STUDY**



- ♣ To evaluate the environmental impacts associated with the design and construction phases of the building.
- To identify and quantify the carbon footprint and other key environmental indicators using the One Click LCA tool.
- To assess material usage, energy consumption and waste generation throughout the building lifecycle stages.
- 🗫 To provide data-driven insights for reducing negative environmental impacts during construction.
- To support sustainable decision-making in building design and construction processes.
- To benchmark the environmental performance of the building against industry standards or regulations.
- ♣ To promote **awareness** of environmental sustainability in the construction sector.

#### SPECIFIC OBJECTIVE OF THIS STUDY

- ♣ To Optimize embodied carbon in building materials
- ♣ To Optimize multiple environmental impacts of building materials
- International benchmarking

3

# **Tangible Benefits:**



#### **ENERGY BENEFITS**

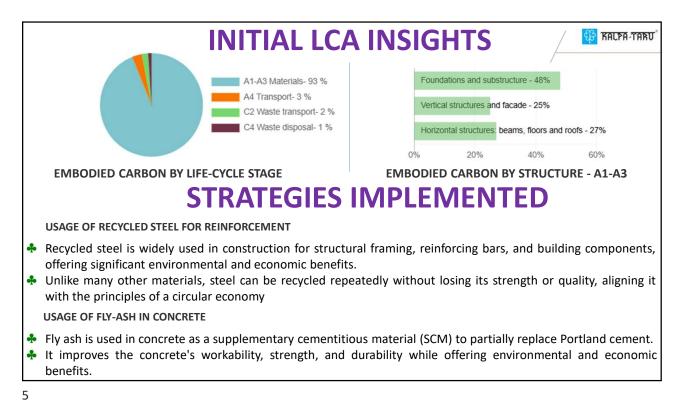
Low-embodied-carbon materials often require less energy during extraction, transport, and processing, reducing overall energy usage in the construction supply chain.

#### **RESOURCE BENEFITS**

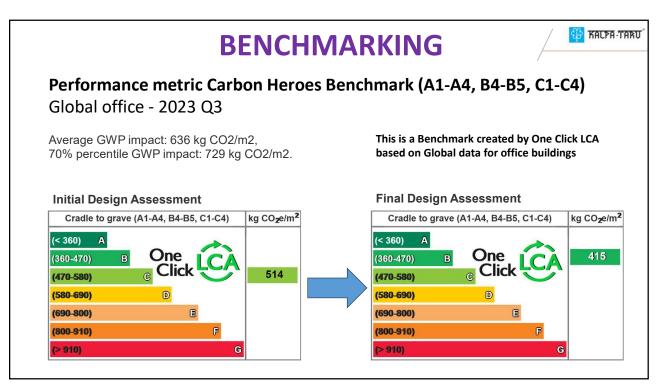
Efficient material sourcing and manufacturing (less cement, more recycled steel) typically use less water than traditional high-carbon options.

#### **CARBON REDUCTION**

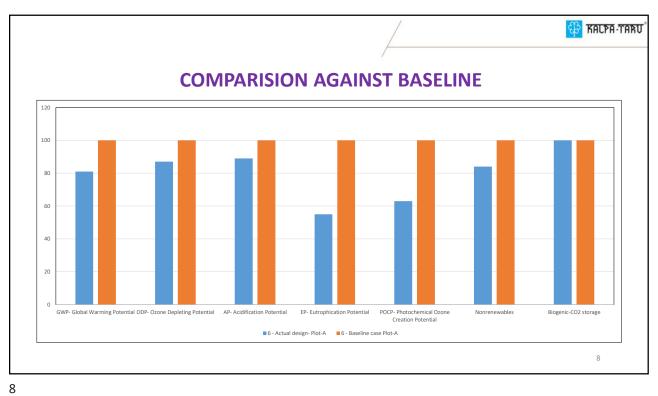
Building with optimized materials and efficient logistics can lower construction-phase embodied carbon by reducing total project emissions sharply.


# **Intangible Benefits:**

#### **REPUTATION**


A This Building is awarded Green Building LEED Gold Certificate.

#### **SOCIAL AND WELLBEING BENEFITS**


Safer construction sites and Procuring material with supply chains result from using non-toxic, responsibly sourced materials, creating a healthier environment for laborers and communities



\_



|               | RESULTS IN<br>TRANSF                                                | ONE CL                                                 | ICK CL                       | A BAS<br>WAST                           | ED ON<br>E PRO                         | MATEI<br>CESSIN                                            | RIALS,<br>G                               | <u>₩</u>                                  | КАСРА-Т    |
|---------------|---------------------------------------------------------------------|--------------------------------------------------------|------------------------------|-----------------------------------------|----------------------------------------|------------------------------------------------------------|-------------------------------------------|-------------------------------------------|------------|
|               | Result category                                                     | Global warming<br>kg CO₂e                              | Ozone Depletion<br>kg CFC11e | Acidification kg<br>SO₂e                | Eutrophication kg<br>PO <sub>4</sub> e | Formation of<br>ozone of lower<br>atmosphere kg<br>Ethenee | Depletion of<br>nonrenewable<br>energy MJ | Biogenic carbon<br>storage kg CO₂e<br>bio | Mass of ra |
| A1-A3         | Construction Materials                                              | 3.40E+06                                               | 1.46E-01                     | 1.86E+04                                | 3,93E+03                               | 1,04E+03                                                   | 3,31E+07                                  | 0,00E+00                                  | 1,83E+07   |
| A4            |                                                                     |                                                        | 2.56E-02                     | 2.64E+02                                | 5,48E+01                               | 2.10E+01                                                   | 2.33E+06                                  | .,                                        | ,          |
| A4-leg2       | Transportation to site - leg 2                                      | ,                                                      | ,                            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                        | ,                                                          | ,                                         |                                           |            |
| A4            | Transportation to site                                              | 1,49E+05                                               | 2,56E-02                     | 2,64E+02                                | 5,48E+01                               | 2,10E+01                                                   | 2,33E+06                                  |                                           |            |
| B3a           | Repair - materials                                                  | 0,00E+00                                               | 0,00E+00                     | 0,00E+00                                | 0,00E+00                               | 0,00E+00                                                   | 0,00E+00                                  |                                           | 0,00E+00   |
| B3b           | Repair - transport                                                  | 0,00E+00                                               | 0,00E+00                     | 0,00E+00                                | 0,00E+00                               | 0,00E+00                                                   | 0,00E+00                                  |                                           |            |
| B3b-leg2      | Repair - transport leg 2                                            |                                                        |                              |                                         |                                        |                                                            |                                           |                                           |            |
| B3c           | Repair - waste                                                      | 0,00E+00                                               | 0,00E+00                     | 0,00E+00                                | 0,00E+00                               | 0,00E+00                                                   | 0,00E+00                                  | 0,00E+00                                  |            |
| В3            | Repair                                                              | 0,00E+00                                               | 0,00E+00                     | 0,00E+00                                | 0,00E+00                               | 0,00E+00                                                   | 0,00E+00                                  |                                           | 0,00E+00   |
| B4-B5a        | Material replacement - materials                                    | 1,55E+04                                               | 3,97E-04                     | 6,84E+01                                | 1,81E+01                               | 5,72E+00                                                   | 1,75E+05                                  |                                           | 3,07E+04   |
| B4-B5b        | Material replacement - transport                                    | 1,42E+02                                               | 2,79E-05                     | 6,45E-01                                | 1,40E-01                               | 8,38E-03                                                   | 4,02E+03                                  |                                           |            |
| B4-B5b-leg2   | Material replacement - transport leg 2                              |                                                        |                              |                                         |                                        |                                                            |                                           |                                           |            |
| B4-B5c        | Material replacement - waste                                        | 1,87E+02                                               | 3,55E-05                     | 1,08E+00                                | 2,32E-01                               | 2,31E-02                                                   | 4,24E+03                                  | 0,00E+00                                  |            |
| B4-B5         | Material replacement and refurbishment                              | 1,58E+04                                               | 4,60E-04                     | 7,01E+01                                | 1,84E+01                               | 5,75E+00                                                   | 1,83E+05                                  |                                           | 3,07E+04   |
| C2            | Waste transport                                                     | 8,78E+04                                               | 1,73E-02                     | 4,01E+02                                | 8,73E+01                               | 5,36E+00                                                   | 2,51E+06                                  |                                           |            |
| C3            | Waste processing                                                    | 2,11E+03                                               | 2,83E-04                     | 1,48E+01                                | 2,09E+00                               | 7,17E-01                                                   | 5,09E+04                                  |                                           |            |
| C4            | Waste disposal                                                      | 4,51E+04                                               | 8,10E-03                     | 3,31E+02                                | 7,09E+01                               | 9,03E+00                                                   | 6,52E+05                                  |                                           |            |
| C1-C4         | End of life                                                         | 1,35E+05                                               | 2,57E-02                     | 7,47E+02                                | 1,60E+02                               | 1,51E+01                                                   | 3,21E+06                                  |                                           |            |
| Full building | Full building to GHG                                                | 3,70E+06                                               | 1,97E-01                     | 1,96E+04                                | 4,16E+03                               | 1,09E+03                                                   | 3,88E+07                                  | 0,00E+00                                  | 1,83E+07   |
|               | Total                                                               | 3,70E+06                                               | 1,97E-01                     | 1,96E+04                                | 4,16E+03                               | 1,09E+03                                                   | 3,88E+07                                  | 0,00E+00                                  | 1,83E+07   |
|               |                                                                     | Comparing total results with: 6 - Baseline case Plot-A |                              |                                         |                                        |                                                            |                                           |                                           |            |
|               | 6 - Baseline case Plot-A Total                                      | 4,59E+06                                               | 2,28E-01                     | 2,21E+04                                | 7,64E+03                               | 1,71E+03                                                   | 4,61E+07                                  | 0,00E+00                                  |            |
|               | 6 - Actual design- Plot-A compared with 6 -<br>Baseline case Plot-A | -19 %                                                  | -13 %                        | -11 %                                   | -45 %                                  | -37 %                                                      | -16 %                                     | 0%                                        | 7          |



# **CHALLENGES & MITIGATION**



| SR. | PARAMETER                        | CHALLENGE                                                                              | MITIGATION                                                                                          |  |  |
|-----|----------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|
| 1   | Data Collection                  | Difficulty in obtaining data on materials, energy, transport.                          | Used standardized LCA databases & asked respective Suppliers to provide their EPDs                  |  |  |
|     |                                  | Vendors were not ready to disclose full material or energy inputs                      | Preferred Green-certified suppliers & Cross-verifed with multiple sources                           |  |  |
| 2   | System<br>Boundary<br>Definition | Some Transportation, packaging, and construction site operations <b>may</b> be missed. | Created a Checklist which Included upstream / downstream processes wherever relevant and proceeded. |  |  |
| 3   | Design Phase                     | Lack of LCA knowledge among design team                                                | Included sustainability consultant in the team & Encouraged early-stage LCA with design architects. |  |  |
|     |                                  | Cost & Aesthetics - Override sustainability                                            | Promoted whole-life cost and benefit analysis                                                       |  |  |
| 4   | Waste<br>Generation              | Concrete, steel, and glass contribute significantly to emissions                       | Using low-carbon concrete and recycled steel Optimizing structural design to reduce material use    |  |  |
| 5   | Resistance from stakeholders     | Some Contractors prioritized cost and schedule over environmental goals                | Communicate long-term benefits of green design.                                                     |  |  |

9

## LESSONS LEARNT DURING THIS STUDY



- Identifying hotspots of environmental impact during design and construction stages.
- Facilitating informed decision-making by **minimizing material use** through efficient layouts, avoiding overdesign and utilizing modular options when possible.
- Providing a **quantifiable assessment** using LCA to evaluate and compare different design options, structural systems, and materials, ensuring carbon impact is quantified and optimized from the start.
- **Material substitution:** Where feasible, substituting high-carbon materials with lower-carbon alternatives.
- Long lifespan: Designing buildings for flexibility, future adaptation, and longer useful lifespans.
- Using local materials reduces transportation emissions.
- Encouraging the use of **eco-friendly materials** and sustainable construction practices.
- Enabling cost savings through efficient resource management and waste reduction.

# THANK YOU

11

11

# **INTRODUCTION**



- ♣ Kalpataru Infinia A is situated in Vakola, Santacruz East, Mumbai, opposite Grand Hyatt Hotel.
- ♣ The development comprises 3 basement levels + Ground floor + 12 upper floors, with a total construction area of 10,744.18 square meters.
- ♣ It offers convenient accessibility via road from the Western Express Highway and Santacruz-Chembur Link Road (SCLR), by train from Santacruz and Kurla Railway Stations, and by metro from Santacruz Metro Station.
- During the Design & Construction phase, multiple parameters including energy efficiency, water management, solid waste management, sewage treatment, and landscaping were carefully considered.
- Upon completion, the project was handed over to ICICI Prudential Asset Management Company.



# PROJECT: Embodied carbon optimization in commercial building- "KALPATARU INFINIA A"

#### Specific Objective of the Project:

1. To Optimize embodied carbon in building materials

2. To Optimize multiple environmental impacts during materials

3. International benchmarking

Timelines of the Project: April - 2022 to May - 2024

Major Milestones: 1. Initial Bill of material

2. Life cycle analysis

3. Assessment of alternative materials

4. Design finalization

13



# STRATEGIES IMPLEMENTED

#### **USAGE OF RECYCLED STEEL FOR REINFORCEMENT**

- Recycled steel is widely used in construction for structural framing, reinforcing bars, and building components, offering significant environmental and economic benefits.
- Unlike many other materials, steel can be recycled repeatedly without losing its strength or quality, aligning it with the principles of a circular economy

#### **USAGE OF FLY-ASH IN CONCRETE**

- Fly ash is used in concrete as a supplementary cementitious material (SCM) to partially replace Portland cement.
- It improves the concrete's workability, strength, and durability while offering environmental and economic benefits.

# **BENEFITS OF THIS STUDY**



- Helps identify hotspots of environmental impact during design and construction stages.
- Facilitates informed decision-making to minimize resource consumption and emissions.
- Provides a quantifiable assessment that supports green building certifications.
- Encourages the use of **eco-friendly materials** and sustainable construction practices.
- Enables cost savings through efficient resource management and waste reduction.
- Enhances the environmental responsibility profile of the project and stakeholders.
- Supports compliance with environmental regulations and sustainability goals.
- Contributes to the global effort in **reducing carbon footprint** and mitigating climate change.